Focused ion beam milling of gallium phosphide nanostructures for photonic applications

نویسندگان

  • Eleonora De Luca
  • Reza Sanatinia
  • Srinivasan Anand
  • Marcin Swillo
چکیده

We report on the fabrication of gallium phosphide (GaP) nanowaveguides of controlled dimensions, as small as 0.03 μm and aspect ratio in excess of 20, using focused ion beam (FIB) milling. A known limitation of this fabrication process for photonic applications is the formation of gallium droplets on the surface. We demonstrate a postfabrication step using a pulsed laser to locally oxidize the excess surface gallium on the FIB milled nanostructures. The process significantly reduces the waveguide losses. The surface optical quality of the fabricated GaP nanowaveguides has been evaluated by second-harmonic generation experiments. Surface and bulk contributions to second-order optical nonlinearities have been identified by polarization measurements. The presented method can potentially be applied to other III-V nanostructures to reduce optical losses. ©2016 Optical Society of America OCIS codes: (160.6000) Semiconductor materials; (350.3850) Materials processing; (190.4400) Nonlinear optics, materials; (190.4350) Nonlinear optics at surfaces; (230.7370) Waveguides; (190.2620) Harmonic generation and mixing; (350.4238) Nanophotonics and photonic crystals. References and links 1. M. Komuro, “Ion beam exposure apparatus using a liquid metal source,” Thin Solid Films 92(1-2), 155–164 (1982). 2. R. L. Kubena, R. L. Seliger, and E. H. Stevens, “High resolution sputtering using a focused ion beam,” Thin Solid Films 92(1–2), 165–169 (1982). 3. T. Liang, A. Stivers, R. Livengood, P.-Y. Yan, G. Zhang, and F.-C. Lo, “Progress in extreme ultraviolet mask repair using a focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 18(6), 3216 (2000). 4. A. Al-Abboodi, J. Fu, P. M. Doran, and P. P. Y. Chan, “Three-dimensional nanocharacterization of porous hydrogel with ion and electron beams,” Biotechnol. Bioeng. 110(1), 318–326 (2013). 5. K. Narayan, C. M. Danielson, K. Lagarec, B. C. Lowekamp, P. Coffman, A. Laquerre, M. W. Phaneuf, T. J. Hope, and S. Subramaniam, “Multi-resolution correlative focused ion beam scanning electron microscopy: applications to cell biology,” J. Struct. Biol. 185(3), 278–284 (2014). 6. X. Jiang, Q. Gu, F. Wang, J. Lv, Z. Ma, and G. Si, “Fabrication of coaxial plasmonic crystals by focused ion beam milling and electron-beam lithography,” Mater. Lett. 100, 192–194 (2013). 7. M. A. Draganski, E. Finkman, B. C. Gibson, B. A. Fairchild, K. Ganesan, N. Nabatova-Gabain, S. TomljenovicHanic, A. D. Greentree, and S. Prawer, “Tailoring the optical constants of diamond by ion implantation,” Opt. Mater. Express 2(5), 644 (2012). 8. Y. L. D. Ho, R. Gibson, C. Y. Hu, M. J. Cryan, J. G. Rarity, P. J. Heard, J. A. Timpson, A. M. Fox, M. S. Skolnick, M. Hopkinson, and A. Tahraoui, “Focused ion beam etching for the fabrication of micropillar microcavities made of III-V semiconductor materials,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 25(4), 1197 (2007). 9. X. Jiang, Q. Gu, L. Yang, R. Zhao, J. Lv, Z. Ma, and G. Si, “Functional plasmonic crystal nanoantennae with ultrasmall gaps and highly tunable profiles,” Opt. Laser Technol. 71, 1–5 (2015). 10. R. W. Tjerkstra, F. B. Segerink, J. J. Kelly, and W. L. Vos, “Fabrication of three-dimensional nanostructures by focused ion beam milling,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 26(3), 973 (2008). 11. D. C. Aveline, L. Baumgartel, B. Ahn, and N. Yu, “Focused ion beam engineered whispering gallery mode resonators with open cavity structure,” Opt. Express 20(16), 18091–18096 (2012). #255882 Received 17 Dec 2015; revised 19 Jan 2016; accepted 19 Jan 2016; published 22 Jan 2016 © 2016 OSA 1 Feb 2016 | Vol. 6, No. 2 | DOI:10.1364/OME.6.000587 | OPTICAL MATERIALS EXPRESS 587 12. D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express 13(8), 3079–3086 (2005). 13. F. Vallini, D. S. L. Figueira, P. F. Jarschel, L. A. M. Barea, A. A. G. Von Zuben, and N. C. Frateschi, “Effects of Ga+ milling on InGaAsP quantum well laser with mirrors milled by focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 27(5), L25 (2009). 14. L. A. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 27(6), 2979 (2009). 15. J. Daniel and D. F. Moore, “A microaccelerometer structure fabricated in silicon-on-insulator using a focused ion beam process,” Sens. Actuators A Phys. 73(3), 201–209 (1999). 16. J. Teng and P. Prewett, “Focused ion beam fabrication of thermally actuated bimorph cantilevers,” Sens. Actuators A Phys. 123–124, 608–613 (2005). 17. B. P. Gila, “Applications of new focused ion beams in nanofabrication and material studies,” Microsc. Anal. (Am. Ed.) 7, 7–10 (2013). 18. T. Fujii, K. Iwasaki, M. Munekane, T. Takeuchi, M. Hasuda, T. Asahata, M. Kiyohara, T. Kogure, Y. Kijima, and T. Kaito, “A nanofactory by focused ion beam,” J. Micromech. Microeng. 15(10), S286–S291 (2005). 19. J. Gierak, A. Madouri, A. L. Biance, E. Bourhis, G. Patriarche, C. Ulysse, D. Lucot, X. Lafosse, L. Auvray, L. Bruchhaus, and R. Jede, “Sub-5nm FIB direct patterning of nanodevices,” Microelectron. Eng. 84(5–8), 779–783 (2007). 20. J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, J. F. Mansfield, R. S. Goldman, J. H. Wu, W. Ye, B. L. Cardozo, D. Saltzman, K. Sun, H. Sun, and J. F. Mansfield, “Formation and coarsening of Ga droplets on focused-ion-beam irradiated GaAs surfaces,” Appl. Phys. Lett. 95(15), 153107 (2009). 21. Transparency Market Research, “Focused Ion Beam Market Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2015 2021,” (2015) http://www.transparencymarketresearch.com/focused-ion-beammarket.html. 22. M. C. Dolph and C. Santeufemio, “Exploring cryogenic focused ion beam milling as a Group III–V device fabrication tool,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 328, 33–41 (2014). 23. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997). 24. Y. A. Goldbery, Handobook Series on Semiconductor Parameters (World Scientific, 1996). 25. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983). 26. R. Sanatinia, M. Swillo, and S. Anand, “Surface second-harmonic generation from vertical GaP nanopillars,” Nano Lett. 12(2), 820–826 (2012). 27. A. Dobrovolsky, P. O. Å. Persson, S. Sukrittanon, Y. Kuang, C. W. Tu, W. M. Chen, and I. A. Buyanova, “Effects of Polytypism on Optical Properties and Band Structure of Individual Ga(N)P Nanowires from Correlative Spatially Resolved Structural and Optical Studies,” Nano Lett. 15(6), 4052–4058 (2015). 28. Q. Wu, Z. Hu, C. Liu, X. Wang, Y. Chen, and Y. Lu, “Synthesis and optical properties of gallium phosphide nanotubes,” J. Phys. Chem. B 109(42), 19719–19722 (2005). 29. R. Sanatinia, S. Anand, and M. Swillo, “Experimental quantification of surface optical nonlinearity in GaP nanopillar waveguides,” Opt. Express 23(2), 756–764 (2015). 30. R. Sanatinia, S. Anand, and M. Swillo, “Modal Engineering of Second-Harmonic Generation in Single GaP Nanopillars,” Nano Lett. 14(9), 5376–5381 (2014). 31. K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vucković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17(25), 22609–22615 (2009). 32. K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett. 98(26), 98–101 (2011). 33. G. Shambat, K. Rivoire, J. Lu, F. Hatami, and J. Vucković, “Tunable-wavelength second harmonic generation from GaP photonic crystal cavities coupled to fiber tapers,” Opt. Express 18(12), 12176–12184 (2010). 34. S.-L. Ou, D.-S. Wuu, Y.-C. Fu, S.-P. Liu, R.-H. Horng, L. Liu, and Z.-C. Feng, “Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition,” Mater. Chem. Phys. 133(2–3), 700–705 (2012). 35. E. Millon, “Advanced functional oxide thin films grown by pulsed-laser deposition,” Appl. Surf. Sci. 278, 2–6 (2013). 36. C. Hebert, A. Petitmangin, J. Perrière, E. Millon, A. Petit, L. Binet, and P. Barboux, “Phase separation in oxygen deficient gallium oxide films grown by pulsed-laser deposition,” Mater. Chem. Phys. 133(1), 135–139 (2012). 37. F.-P. Yu, S.-L. Ou, and D.-S. Wuu, “Pulsed laser deposition of gallium oxide films for high performance solarblind photodetectors,” Opt. Mater. Express 5(5), 1240–1249 (2015).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Focused ion beam milling of three dimensional nanostructures with high precision

The fabrication of an extended three-dimensional nanostructure with dimensions much larger than the feature size using a focused ion beam is described. By milling two identical patterns of pores with a designed diameter of 460 nm in orthogonal directions, a photonic crystal with an inverse woodpile structure was made in a gallium phosphide single crystal. The patterns are aligned with an unprec...

متن کامل

Dense Periodical Patterns In Photonic Devices: Technology For Fabrication And Device Performance

DENSE PERIODICAL PATTERNS IN PHOTONIC DEVICES:TECHNOLOGY FOR FABRICATION AND DEVICE PERFORMANCEbySABARISH CHANDRAMOHANDecember 2016 Advisor: Dr. Ivan AvrutskyMajor: Electrical EngineeringDegree: Doctor of Philosophy For the fabrication, focused ion beam parameters are investigated to successfullyfabricate dense periodical patterns, such as gratings, on hard transitio...

متن کامل

Controlling the Dimensions of Nano-structured Materials Using Fib Sem

Techniques for characterization and methods for fabrication at the nano-scale are becoming more powerful, giving new insights into the spatial relationships between nanostructures and greater control over their development. A case in point is the application of state-of-the-art focused ion beam technology (FIB), in combination with high-performance scanning electron microscopy (SEM), giving the...

متن کامل

Focused Ion Beam Milled On-chip Resonator Nanostructures for Applications in Rare-Earth-Ion-Doped Al2O3 Active Waveguides

Reflection gratings on Al2O3 channel waveguides were defined by focused ion beam milling. Fabry-Perot microcavities were fabricated and improved performance upon annealing was demonstrated, making them viable candidates as resonators for on-chip waveguide lasers.

متن کامل

Nano-Scale Lateral Milling with Focused Ion Beam for Ultra-Smooth Optical Device Surface

The effect of the nano-scale lateral milling process using a focused ion beam (FIB) was studied in order to prepare a flat and smooth surface suitable for the growth of optical device structures such as a distributed Bragg reflector (DBR) mirror on a rough gallium nitride (GaN) surface. A high-quality, smooth, and flat surface is very essential for high precision space optics. It was fabricated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016